Triethylgermanium Mercaptides and Benzoates

HERBERT H. ANDERSON

Received March 12, 1956

Table I lists the properties of ten new triethylgermanium mercaptides and two triethylgermanium benzoates. Mercaptans less volatile than acetic acid furnish triethylgermanium mercaptides through removal of acetic acid by fractional distillation, typically $(C_2H_5)_3GeOCOCH_3 + HSC_6H_5 \rightarrow (C_2H_5)_3GeSC_6H_5 + CH_3COOH \uparrow$. A reaction between $[(C_2H_5)_3Ge]_2O$ and C_6H_5SH produces $(C_2H_5)_3GeSC_6H_5$ easily, but $[(C_2H_5)_3Ge]_2O$ and C_2H_5SH yield practically no $(C_2H_5)_3GeSC_2H_5$.

TABLE I

PROPERTIES OF MERCAPTIDES AND BENZOATES										
	B.P., <i>a</i>				Mol. wt.		S or OCOR		Germanium	
Compound	°C	MM.	d_{4}^{20}	n^{20}	Calc'd	Found	Calc'd	\mathbf{Found}	Calc'd	Found
$\overline{(C_2H_5)_3GeSC_6H_5}$	286 112–113	760 1	1.153	1.553	268.9	27 1	11.9	12.0	27.0	27.2
$(C_2H_5)_3Ge$ -o- $SC_6H_4CH_3$	298 1 2 3–124	760	1.141	1.553	283.0	2 93	11.3	11.2	25.6	25.9
$(C_2H_5)_3Ge-m-SC_6H_4CH_3$	$300 \\ 143 - 145$	$\frac{760}{1}$	1.131	1.550	283.0	28 6	11.3	11.3	25 . 6	25 . 4
$(C_2H_5)_3GeSCH_2C_6H_5$	305 130–131	$760\\1$	1.139	1,549	283.0	2 90	11.3	11.3	25.6	25.4
$(C_2H_5)_3Ge$ -o- $SC_6H_4NH_2^b$	$326 \\ 163 - 164$	$760 \\ 1$	1.197	1.583	284.0	276	11.3	11.3	25 , 5	25.1
$(C_2H_5)_3Ge-\beta-SC_{10}H_7$	367° 195–197	$76\overline{0}$ 1	1.184	1.613	319.0	313	10.0	10.0	22.7	22.4
$(\mathrm{C_2H_5})_3\mathrm{GeSCH_2OC_4H_3}^b$	276° 130–132	760	1.177	1.522	272.9	284	11.7	11.7	2 6.6	26 , 5
$(C_2H_5)_3GeS-n-C_6H_{13}$	277 108–109	760	1.029	1.488	277.0	273	11.6	11.5	26.2	26.0
$(C_2H_5)_3GeS-n-C_7H_{15}$	288 117–118	760 1	1.019	1.489	291 .0	302	11.0	10.9	24.9	24.8
$(C_2H_5)_3GeS-n-C_{12}H_{25}$	357 184–186	760	0.975	1.481	361.2	348	8.9	8.6	20.1	19.8
$(C_2H_5)_3GeOCOC_6H_5^d$	290 105–107	760	1.172	1.513	280.9	268	43.1	43.3	25.8	
$(\mathrm{C}_{2}\mathrm{H}_{5})_{3}\mathrm{Ge}\text{-}o\text{-}\mathrm{OCOC}_{6}\mathrm{H}_{4}\mathrm{NH}_{2}$	331 174–176	760 1	1.215	1.544	295.9	310	45.8	46.4	24.5	24.4

^{*a*} Distillation of each compound at the lowest pressure listed. ^{*b*} Pale yellow liquid. ^{*c*} Slight decomposition. ^{*d*} Center fraction.

Prior publications have listed $(C_2H_5)_3GeSCH_2$ -COOGe $(C_2H_5)_3$ as the only compound¹ containing both ethyl groups and the Ge—S mercaptide linkage, but have contained many unsubstituted mercaptides such as $(C_2H_5S)_4Ge.^2$ Recent papers from this institute reported numerous triethyltin mercaptides such as $(C_2H_5)_3SnSC_2H_5^3$ and $(C_2H_5)_3$ -SnSCH₃.⁴

This present paper shows the properties of ten previously unreported triethylgermanium mercaptides, all derived from mercaptans which have boiling points higher than that of acetic acid, 118°. This paper includes preparative methods, and contains information on the reactions of triethylgermanium mercaptides. There are also two previously unreported compounds $(C_2H_5)_3GeOCOC_6H_5$ and $(C_2H_5)_3Ge-o-OCOC_6H_4NH_2$.

In the reaction of $(C_2H_5)_3GeOCOCH_3$ and meta-CH₃C₆H₄SH 93% of the products is a mixture of (C₂H₅)₃Ge-m-SC₆H₄CH₃ and CH₃COOH, while an indicated 7% is a mixture of $(C_2H_5)_3$ Ge-m-OC₆H₄-CH₃ and CH₃COSH. Moreover, (C₂H₅)₃GeOCO-CH₃ and ortho-NH₂C₆H₄SH react to yield 90% of mixed (C₂H₅)₃Ge-o-SC₆H₄NH₂ and CH₃COOH, while an indicated 10% is a mixture of $(C_2H_5)_3Ge$ o-OC₆H₄NH₂ and CH₃COSH, according to the following evidence. First, the acetic acid fraction boiled at only 113°, had a weak odor of CH₃COSH, and was not completely miscible with water. Second, the small fraction supposedly $(C_2H_5)_3$ Ge-o- $OC_6H_4NH_2$ was colorless and boiled 30° lower, under 1 mm. pressure, than the pale-yellow $(C_2H_5)_3$ Ge-o-SC₆H₄NH₂. Third, the fractional distillation required very careful collection of the highest-boiling fraction, to yield a product containing the calcu-

⁽¹⁾ Anderson, J. Am. Chem. Soc., 72, 2089 (1950).

⁽²⁾ Backer and Stienstra, Rec. trav. chim., 52, 1033 (1933); 54, 38, 607 (1935).

⁽³⁾ Sasin, J. Org. Chem., 18, 1142 (1953).

⁽⁴⁾ Anderson and Vasta, J. Org. Chem., 19, 1300 (1954).

It is not advisable to prepare $(C_2H_5)_3GeS-n-C_4H_9$ or $(C_2H_5)_3GeS-n-C_5H_{11}$ from $[(C_2H_5)_3Ge]_2O$, b.p. 254°,⁵ because the boiling points could be too close together for good separation by fractional distillation. Under reflux conditions $[(C_2H_5)_3Ge]_2O$ reacts extremely slowly with C_2H_5SH . However, reaction of $[(C_2H_5)_3Ge]_2O$ and C_6H_5SH , a higher-boiling mercaptan of comparatively greater acidity than that of C_2H_5SH , yields $(C_2H_5)_3GeSC_6H_5$ and water easily.

Pure triethylgermanium mercaptides seem to react slowly with higher-boiling mercaptans, with weak organic acids such as benzoic acid, or with $(C_6H_5)_2SiCl_2$. The reaction between $(C_2H_5)_3GeSC_6-H_5$ and 2-naphthalenethiol yields $(C_2H_5)_3Ge-\beta-SC_{10}H_7$ and C_6H_5SH , as expected, but separation by fractional distillation is comparatively difficult.

Briefly, the preparation of triethylgermanium mercaptides is more intricate than preparations of analogous triethyltin mercaptides; any method yielding $(C_2H_5)_3GeSC_2H_5$ apparently must be novel.

EXPERIMENTAL

Starting materials. These included the following: pure $(C_2H_5)_3GeBr^5$ and $(C_2H_5)_3GeOCOCH_3^1$ made from pure $[(C_2H_5)_3Ge]_2O^{1,5}$ and acetic anhydride or hydrobromic acid; Eastman Kodak white label mercaptans, and furfuryl mercaptan from Aldrich Chemical Co., Milwaukee 12, Wisconsin.

Analytical methods. These included the following: conversion of the individual compound to GeO_2 in a Vycor

(5) Kraus and Flood, J. Am. Chem. Soc., 54, 1635 (1932).

crucible with cover, using fuming nitric and sulfuric acids; titration of mercaptide sulfur with KI_s solution (difficult with the amino derivative); titration of benzoic and *ortho*-aminobenzoic acids with sodium hydroxide in ethanol; molecular weights by the lowered freezing point of a camphor solution.

Equipment. Distilling equipment consisted of interchangeable units with ground joints; the distilling column was a 25-cm. length of unpacked tubing 3 mm. in i.d., rating at least 6 plates in slow distillation with a high reflux ratio.

Reactions of $(C_2H_5)_2GeOCOCH_3$. Reaction of 12 millimoles of $(C_2H_5)_3GeOCOCH_3$ and 10.5 millimoles of ortho-CH₃C₅-H₄SH yielded 10 millimoles of acetic acid in 15 minutes of gentle reflux; fractional distillation, first under 20 mm. and finally under 1 mm. pressure, yielded 9.7 millimoles (2.74 g.) of $(C_2H_5)_3Ge-o-SC_6H_4CH_3$, the highest-boiling 1.7 g. of which served for study of properties. Similarly, other reactions gave yields of approximately 90% based on available mercaptan; reflux periods were 10-15 minutes with the HSC₆H₄-type, or 2-naphthalenethiol, or ortho-aminobenzoic acid, and 40-65 minutes with other mercaptans.

Triethylgermanium benzoate. A 30-minute reflux of 12 millimoles of $(C_2H_5)_3$ GeBr and 16 millimoles of silver benzoate in 10 ml. of CCl₄⁶ furnished 11 millimoles of $(C_2H_5)_3$ -GeOCOC₆H₅, a yield of 90%.

Reaction of $[(\dot{C}_2H_5)_3Ge]_2O$ and mercaptans. Five millimoles of the organogermanium oxide and 14 millimoles of C_8H_8SH reacted even at 25°; after 10 minutes at 100° there followed cooling, centrifuging, separation from the water layer, drying with Na₂SO₄, then fractional distillation. A yield of 6.7 millimoles of $(C_2H_5)_3GeSC_6H_5$ resulted, the highest-boiling 60% of which had the following properties: b.p. 289°; $d_4^{2\circ}$ 1.153; $n^{2\circ}$ 1.549; S, 11.8. Yet the organogermanium oxide and C_2H_5SH reacted extremely slowly under reflux according to the b.p. and mercaptide content.

Reactions of organogermanium mercaptides. Reflux of 6 millimoles of $(C_2H_5)_3GeSC_5H_5$ and 5 millimoles of beta-C₁₀H₇SH under 20 mm. pressure for 30 minutes furnished 5 millimoles of $(C_2H_3)_3Ge-\beta-SC_{10}H_7$, b.p. 365°, and 5 millimoles of C₆H₃SH, but the separation by fractional distillation was difficult. Reflux of $(C_2H_5)_3GeSCH_2OC_4H_3$ and a deficiency of benzoic acid under the same conditions gave only a partial reaction. A short reflux of $(C_2H_5)_3Ge-\beta-SC_{10}H_7$ with $(C_6H_5)_2SiCl_2$, with fractional distillation, produced a 25% yield of $(C_2H_5)_3GeCl, \text{ b.p. 171}^{\circ.5}$

PHILADELPHIA 4, PENNA.

(6) Anderson, J. Am. Chem. Soc., 74, 2371 (1952).